欢迎来到吾爱文库! | 帮助中心 分享价值,成长自我!
吾爱文库
全部分类
  • 商业/管理/HR >
    商业/管理/HR
    商业计划书 创业/孵化 市场营销 经营企划 销售管理 营销创新 宣传企划 资本运营 代理连锁/招商加盟 商业合同/协议 公司方案 企业信息化/信息管 管理学资料 企业文档 广告经营 财务报表 项目/工程管理 物业管理 质量控制/管理 企业文化 绩效管理 商务礼仪 励志书籍/材料 人事档案/员工关系 薪酬管理 招聘面试 咨询培训 劳动就业 劳务/用工合同 其它文档
  • 办公文档 >
    办公文档
    PPT模板库 总结/报告 演讲稿/致辞 心得体会 工作范文 述职报告 工作计划 解决方案 调研报告事务文书 经验/事迹 往来文书 模板/表格 规章制度 教学/培训 通知/申请 求职简历 理论文章 统计图表礼仪/庆典 活动策划 会议纪要 招标投标 其它办公文档
  • 高等教育 >
    高等教育
    大学课件 研究生课件 工学 理学 习题/试题 历史学 农学 教育学 哲学 科普读物 政治/理论 专业基础教材 生物学 语言学 微积分 统计学 实验设计 其它相关文档
  • 中学教育 >
    中学教育
    教学课件 高考 中考 高中教育 初中教育 职业教育 中学学案 中学作文 中学实验 高考英语 试题/考题 竞赛题 教学研究 体育理论与教学 音乐美术 视频课件/素材 其它中学文档
  • 医学/心理学 >
    医学/心理学
    基础医学 药学 中医/养生 医学研究方法 心理学理论/研究方 医学试题/课件 心理学论文 心理咨询与治疗 医学现状与发展 心理学书籍 外科学 内科学 妇产科学 神经内外科 烧伤科 眼科学 口腔科学 皮肤病学/性病学 耳鼻咽喉科学 神经病/精神病学 肿瘤学 儿科学 骨科学 康复医学 麻醉学 护理学 检验医学 针灸学 预防医学/卫生学 重症医学 病毒学 外国及民族医学 特种医学 心理健康教育 医学影像 兽医 偏方 综合/其它
  • 资格认证/考试 >
    资格认证/考试
    公务员考试 专升本考试 建造师考试 教师资格考试 全国翻译资格认证 成考 自考 司法考试 微软认证 网络工程师认证 注册会计师 医师/药师资格考试 会计职称考试 报关员资格考试 人力资源管理师 安全工程师考试 出国培训 资产评估师考试 技工职业技能考试 银行/金融从业资格 计算机等级考试 营养师认证 物流师考试 证券从业资格考试 注册税务师 理财规划师 建筑师考试 质量管理体系认证 其它考试类文档
  • 行业资料 >
    行业资料
    食品饮料 化学工业 展会/博览会 国内外标准规范 造纸印刷 纺织服装 家居行业 酒店餐饮 物流与供应链 室内设计 工业设计 家电行业 生活/日用品 航海/船舶 水产/渔业 传媒/媒体 公共安全/评价 畜牧/养殖 林业/苗木 园艺/花卉 农作物 轻工业/手工业 教育/培训 零售业 水利工程 农业工程 系统集成 冶金工业 金属学与工艺 社会学 武器工业 能源与动力工程 原子能技术 文化创意 航空/航天 石油/天然气工业 矿业工程 交通运输 旅游娱乐 实验/测试 其它行业文档
  • 经济/贸易/财会 >
    经济/贸易/财会
    经济学 资产评估/会计 贸易 市场分析 网络营销/经济 商品学 进出口许可 财政/国家财政 税收 稽查与征管/审计 综合/其它
  • 电子/通信 >
    电子/通信
    电子设计/PCB 电子电气自动化 数据通信与网络 光网络传输 无线电电子学/电信 网规网优 核心网技术 运营商及厂商资料 WiMAX技术 TD-SCDMA技术 3G/4G及新技术 CDMA95/CDMA2000/EV WCDMA技术 GSM/GPRS/EDGE 天线/微波/雷达 监控/监视 室内分布 视频会议 考试/面试试题 综合/其它
  • 生活休闲 >
    生活休闲
    服装配饰 美食烹饪 户外/运动 摄影摄像 家居装修 娱乐/时尚 保健/养生 两性/情感 时政新闻 科普知识 社会民生 星座/运势/宗教/风 美容/塑身 婚嫁/育 琴棋书画 游戏攻略 期刊/杂志 留学/签证 手工制作 滑稽幽默 网络生活 武术 彩票 宠物 充电交流 综合/其它
  • IT计算机/网络 >
    IT计算机/网络
    计算机应用/办公自 .NET 数据结构与算法 Java SEO/搜索引擎优化 C/C++资料 linux/Unix相关 手机/mobile开发 UML理论/建模 云计算/并行计算 嵌入式开发/单片机 Windows相关 软件工程 管理信息系统 开发文档 图形图像 网络与通信 网络安全 电子支付 Labview matlab 网络资源 Python Delphi/Per 评测 Flash/Flex CSS/Scr 计算机原理 PHP资料 数据挖掘与识别 Web服务 数据库 VisualBasic 电子商务 服务器 存储 架构 行业软件 人工智能 计算机辅助设计 多媒体应用 软件测试 计算机硬件与维护 网站策划/UE 网页设计/UI 网吧管理 其它相关文档
  • 研究报告 >
    研究报告
    信息产业 农林牧渔 统计年鉴/数据分析 商业贸易 产业政策 石油化工 金融 教育 冶金 轻工 交通 制药行业 安防行业 煤炭 新能源 国防军事 技术指导 综合/其它
  • 换一换
    首页 吾爱文库 > 资源分类 > PDF文档下载
     

    DTPQDT02019019642.pdf

    • 资源ID:3481       资源大小:658.71KB        全文页数:71页
    • 资源格式: PDF        下载权限:游客/注册会员/VIP会员    下载费用:1金币 【人民币1元】
    快捷注册下载 游客一键下载
    会员登录下载
    三方登录下载: QQ登录   微博登录  
    下载资源需要1金币 【人民币1元】
    邮箱/手机:
    温馨提示:
    支付成功后,系统会自动生成账号(用户名和密码都是您填写的邮箱或者手机号),方便下次登录下载和查询订单;
    支付方式: 微信支付    支付宝   
    验证码:   换一换

    加入VIP,下载共享资源
     
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,既可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

    DTPQDT02019019642.pdf

    CoxRegressionwithSurvival-Time-DependentMissingCovariateValues by Yanyao Yi A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Statistics at the UNIVERSITY OF WISCONSIN–MADISON 2019 Date of final oral examination 04/24/2019 The dissertation is approved by the following members of the Final Oral Committee Richard Chappell, Professor, Department of Statistics Zhengjun Zhang, Professor, Department of Statistics Lu Mao, Assistant Professor, Department of Biostatistics and Medical Informatics Menggang Yu, Professor, Department of Biostatistics and Medical Informatics Jun Shao, Professor, Department of Statistics ProQuest Number All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages,these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest Published by ProQuest LLC . Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 22583529 22583529 2019c Copyright by Yanyao Yi 2019 All Rights Reservedi Abstract Analysis with time-to-event data in clinical and epidemiological studies often encounters missing covariate values and the missing at random assumption is commonly adopted e.g., Qi et al., 2005, which assumes that missingness depends on the observed data, including the observed outcome which is the minimum of survival and censoring time. However, it is conceivable that in certain settings, missingness of covariate values is related to the survival time but not to the censoring time Rathouz, 2007. This is especially so when covariate missingness is related with an unmeasured variable that is affected by survival time but does not causally affect survival. If this is the case, then the covariate missingness is not at random as the survival time is censored, and it creates a challenge in data analysis. In this article, we propose an approach to deal with such survival-time-dependent covariate missingness based on the well known Cox proportional hazard model. Our method is based on inverse propensity weighting with the propensity estimated by nonparametric kernel regression. Our estimators are consistent and asymptotically normal, and their finite- sample performance is examined through simulation. An application to a real-data example is included for illustration.ii Contents Abstract i 1 Introduction 1 2 Method 7 2.1 Doubly Weighted Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Compositely Weighted Estimator . . . . . . . . . . . . . . . . . . . . . . . 13 3 Simulation 17 3.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Example 25 4.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Missingness Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Proofs 31iii 5.1 Proof of the fact that 1.5 implies 1.4 . . . . . . . . . . . . . . . . . . . 31 5.2 Proof of the fact that 1.5 and 1.2 imply 1.6 . . . . . . . . . . . . . . . 32 5.3 Proof of the fact that 1.5 implies 1.7 . . . . . . . . . . . . . . . . . . . 32 5.4 Proof of Theorems 2.1.1 and 2.2.1 . . . . . . . . . . . . . . . . . . . . . . 33 5.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.4.2 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.4.3 Proof of Theorem 2.1.1 . . . . . . . . . . . . . . . . . . . . . . . . 37 5.4.4 Proof of Theorem 2.2.1 . . . . . . . . . . . . . . . . . . . . . . . . 45 6 Discussion 50 6.1 Discussion on Weights Estimation . . . . . . . . . . . . . . . . . . . . . . 50 6.1.1 Missingness Propensity for Simulation Setting 2 . . . . . . . . . . 51 6.1.2 Censoring Weight for Simulation Setting 2 . . . . . . . . . . . . . 53 6.2 Discussion on the effect of Kernel Estimatorb 1 . . . . . . . . . . . . . . . 54 6.3 Discussion on Item Missingness of MultivariateX . . . . . . . . . . . . . 56 6.4 Discussion on Time-varying covariates . . . . . . . . . . . . . . . . . . . . 56 References 59iv ListofTables 3.1 Bias, SD, SE, and CP based on 2000 simulation runs for estimation of under setting 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Bias, SD, SE, and CP based on 2000 simulation runs for estimation of under setting 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Bias, SD, SE, and CP based on 2000 simulation runs for estimation of under setting 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4 Relative Efficiency of DWE with respect to CWE variance ration . . . . . . . . 23 4.1 Estimates of coefficients of covariates in Cox regression with stage III NSCLC data 29 4.2 Mutual comparison between CC, SWE and CWE for Stage III NSCLC data . . . . 30v ListofFigures 1.1 DAG constructed under assumptions 1.5 and 1.2 . . . . . . . . . . . . . 4 4.1 Decision tree for assumption 1.3 . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Decision tree for assumption 1.4 . . . . . . . . . . . . . . . . . . . . . . 27 6.1 Comparison between estimatedb 1 T;X and true 1 T;X overT . . . . . 52 6.2 Comparison between estimated b T;X and true T;X overT . . . . . 54vi Acknowledgments There is no doubt that the first person I would like to express my deepest gratitude is my advisor Prof. Jun Shao, for the continuous support of my study and related research, for his patience, motivation, and immense knowledge. It is no exaggeration to say Prof. Shao changed my life and will continuously influence my future life, in attitudes of both working and living. I could not have imagined having a better advisor. My sincere thanks also goes to Guang, Prof. Shao’s wife, who has always treated my wife and me as family and made us feel Madison as our home. I also would like to thank my co-advisor Prof. Menggang Yu, for his support of research assistantship, which provided me not only financial support but also important research experience. Besides my advisors, I would like to thank the rest of my thesis committee Prof. Richard Chappell, Prof. Lu Mao and Prof. Zhengjun Zhang, for their insightful comments and encouragement, but also for the hard question which incented me to widen my research from various perspectives. In addition, I owe my thanks to Prof. Zhengjun Zhang and Chunming Zhang, for teaching me the first statistics courses STAT 609, 610 and 849, which introduced me into the spectacular statistical world and established a solid foundation for my Ph.D study. I am also indebted to Prof. Qiongshi Lv for leading me into genetic statistics at my last year of Ph.D, bringing me to explore this exciting field andvii writing papers with me. With a special mention to my best friends met in Madison, Muxuan Liang and Xiuyu Ma, it was fantastic to have the opportunity to spend majority of my PhD life with you. Last but not the least, I would like to thank my parents for their unconditional love and supports and especially my wife Dr. Ting Ye, for her everlasting love, understanding, support and making my life wonderful.1 Chapter1 Introduction Cox regression is one of the most popular methods dealing with censored failure time in survival analysis. For a continuous failure time T and covariate vectorV measured at baseline, in this paper we consider the following Cox proportional hazard model, tjV 0 t exp V ; 1.1 where tjV is the hazard at time t given V , 0 t is an unspecified baseline hazard function common for all subjects, is a vector of unknown parameters, and is its transpose. In many survival studies, there exits censoring. In this paper, we focus on right censoring, i.e., there is a continuous censoring timeC and what we observe areTC minT;C and I fT Cg , the indicator of event T C. A common assumption on censoring is TCjV; 1.22 i.e., T and C are conditionally independent givenV . Based on a random sample from the distribution of TC;; V , can be estimated by maximizing the partial likelihood derived in Cox 1975 under 1.1 and 1.2, and the asymptotic properties of this estimator can be found in Andersen and Gill 1982. In clinical and epidemiological studies some components of the covariate vectorV may have missing values and the partial likelihood cannot be directly applied. LetV X;Z withX being the sub-vector that may have missing values andZ being the sub-vector that is always observed, and letR be the indicator equaling 1 ifX is completely observed and 0 if at least one component ofX is missing. As pointed out in Paik and Tsai 1997, Lipsitz and Ibrahim 1998, and Rathouz 2007, the complete-case analysis with the partial likelihood based only on subjects with R 1 is valid if R T;C;V , i.e., missing completely at random Rubin, 1976, orR T;CjV , i.e., missingness depends only onV , not on outcome T;C, although missingness may be not at random and methods more efficient than complete-case analysis can be derived, e.g., Lin and Ying 1993 and Cook et al. 2011. However, missingness of covariate values is often believed to be outcome related, either directly or indirectly. In survival studies, some researchers assume that missingness isTC related, i.e., R X;T;Cj TC;Z; 1.3 e.g., Lipsitz and Ibrahim, 1998; Chen and Little, 1999; Herring and Ibrahim, 2001; Chen, 2002, which is a type of missing at random assumption Rubin, 1976 becauseTC,Z and are all observed. Even ifR is related with T;C, however, it is hard to imagine why R is related toTC, a very special function of the outcome T;C. We speculate that 1.3 is assumed for an easy analysis, since one can simply use methods valid under missing at3 random, e.g., inverse propensity weighting with estimated prR 1j TC;Z; based on always observed TC;Z; Wang and Chen, 2001; Qi et al., 2005; Xu et al., 2009. Rathouz 2007 argues that the following survival-time-dependent missingness mecha- nism is more reasonable than assumption 1.3 in many biomedical studies, R X;Cj T;Z 1.4 One scenario in which 1.4 holds is when there is an unmeasured variableU satisfying R T;C;Xj U;Z and U C;Xj T;Z 1.5 The first condition in 1.5 means that missingness of X is driven by U together with observedZ, whereas the second condition in 1.5 says thatU is not dependent with C;X when T;Z is given. It is shown in Section 5.1 and 5.2 respectively that 1.5 implies 1.4, and together with 1.2 implies that fR;U;T;C;V fRjU;ZfUjT;ZfTjV fC;V ; 1.6 wherefj orf is used as a generic notation for a conditional or unconditional density. Result 1.6 indicates thatU does not causally affectT , i.e., it does not enter infTjV , but U is affected by T through fU j T;Z. It is also shown in Section 5.3 that 1.5 implies prR 1jT;Z EfprR 1jU;ZjT;Zg; 1.7 which means T is a surrogate for the unmeasured U in the missingness propensity. The above Directed Acyclic Graph DAG constructed under assumptions 1.5 and 1.2 pro-4 Figure 1.1 DAG constructed under assumptions 1.5 and 1.2 vides an illustration of result 1.6. More details about DAG and graphic models can be found in Pearl et al. 2016. An example ofU could be some phenotype of potential sur- vival or a subjective assessment, as the following example indicates. Example 1. In our real data example analyzed in Chapter 4 based on the national cancer database NCDB https//www.facs.org/quality-programs/cancer/ncdb, all patients were diagnosed with stage III Non-Small Cell Lung Cancer NSCLC at baseline, but only about 40 patients had more accurate tumor stageX recorded as either stage IIIA or stage IIIB. From the lung cancer staging system provided by the American Joint Committee on Cancer https//cancerstaging.org/references-tools/quickreferences/Documents/LungMedium.pdf, the main difference between stage IIIA and stage IIIB is the nodal involvement, i.e., stage IIIB has much more extensive metastasis in regional lymph nodes regardless of tumor size. Measuring X is difficult and may require invasive techniques. Recent advanced non-invasive methods such as positron emission tomography or compute tomography do not provide definitive stage confirmation, since the region around the lung to be examined5 for lymph node involvement includes the superior mediastinum, the lower mediastinum, the aortopulmonary window, and para-aorta Teran and Brock, 2014. Thus, a major rea- son for missingX in this example is physician’s judgment on whether an invasive test for a difficult measurement ofX is worthwhile. Such judgment is usually made according to the objective measurements for patient, the observed variablesZ, and some subjective assess- ments, the unrecorded variable U in 1.5, which can be affected by patient’s prognostic factorsZ and illness related to the potential survival timeT , but is unlikely to be directly affected by censoring timeC. Thus, assumption 1.4 is more reasonable than assumption 1.3 for this real data example. SinceT may be censored, the missingness mechanism 1.4 is not missing at random. If 1.4 holds instead of 1.3, then estimators in Wang and Chen 2001, Qi et al. 2005 and Xu et al. 2009 will yield a biased result. Also, if 1.4 holds andT cannot be excluded from the missingness propensity, then the complete-case analysis is inconsistent. Although the survival function is identifiable under 1.4 and censoring assumption 1.2 Rathouz, 2007, there is no proposed method for estimating in Rathouz 2007 and afterwards. The main challenge is that prR 1jT;Z cannot be directly estimated when T is censored. In this article, we construct two inverse probability weighting estimators of in the Cox proportional hazard model 1.1 under assumptions 1.2 and 1.4. The first one is based on a weighted score function using only subjects with observed survival time and completely observed covariates. The first estimator may not be efficient since only data with ;R 1; 1 are involved in the score function, but this estimator is used as an initial estimator in the construction of a more efficient second estimator based on a weighted score function using all data withR 1, censored or not. The major step in6 obtaining th

    注意事项

    本文(DTPQDT02019019642.pdf)为本站会员($向钱看齐$)主动上传,吾爱文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知吾爱文库(发送邮件至123456@qq.com或直接QQ联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    copyright@ 2008-2013 吾爱文库网站版权所有
    经营许可证编号:京ICP备12026657号-3

    收起
    展开